About the Society

The Society was founded in 1967 with the aim of promoting the advancement of earth sciences particularly in Malaysia and the Southeast Asian region.

The Society has a membership of about 600 earth scientists interested in Malaysia and other Southeast Asian regions. The membership is worldwide in distribution.
The geology and aquifer potential in Peninsular Malaysia

HARWANT SINGH AND PETER H.F. LO
University Malaysia Sarawak
Kota Samarahan
Sarawak

Abstract: Water management requires the understanding of the sources of this essential resource. Groundwater from geologic strata is an essential source of water. In this article the lithology, to the extent it is specified, is extracted from the geological map to depict the hydrogeological character of the rock types and convey the paucity of explicit lithological characterisation and the need for it.

INTRODUCTION

Water is a resource that is essential for sustaining life. The management of this resource, according to Bennett and Doyle (1997), has three components i.e. resource acquisition, redistribution and water treatment and disposal. Groundwater from the subsurface contained in pore spaces in rock is an essential source of water. This water source is a component in the management of this resource. This article studies this important source of water.

SOURCES OF GROUNDWATER

Geologic strata are saturated at some depth below the land surface. The interface between the saturated and unsaturated section is called the water table. The primary sources of groundwater below the water table are aquifers, which are, saturated permeable geologic strata that yield significant quantities of water under ordinary potential gradients. Other rock units which may serve as sources of groundwater are either aquicludes i.e. saturated geologic strata that are incapable of transmitting significant quantities of water under ordinary potential gradients or aquitards which are saturated geologic strata that is capable of transmitting water under ordinary hydraulic gradients but not in sufficient quantities to allow completion of production wells within them. An aquifer that lies between two aquitards is referred to as a confined aquifer while an aquifer in which the water table forms its upper boundary is called an unconfined aquifer. Perched aquifers may occur above an unconfined aquifer when movement of groundwater downward is impeded by a discontinuous aquiclude or aquitard.

ROCK TYPES AS AQUIFERS

The hydrologic property of a rock type as a source of groundwater supply is important as it determines the hydraulic conductivity. The water bearing strata is mainly of layers of sedimentary rock. An aquiclude is generally formed from materials with very low hydraulic conductivity, such as clay in which surface tension effects hold water. Aquitards can still yield significant groundwater under an abstraction regime designed to stress it slowly. Aquitards contain water in storage for a long time that has reached chemical equilibrium with the matrix. Aquitards, therefore, only release water very slowly. This often means water released from an aquitard is of a lower quality to that from an aquifer.

Other aquifers are unconsolidated sediments. These are deposited material
insufficiently compressed for induration into rocks. They are present as a mantle of unconsolidated to semi-consolidated gravel, sand, mud and clay (Stauffer, 1973).

Apart from these the igneous and metamorphic subsurface lithologies are generally impermeable so do not serve as groundwater sources. Price (1996) mentions that these rocks possess little primary porosity down to 1% so hydraulic conductivities are unlikely to exceed 10^{-5} m/day.

ROCK TYPES OF PENINSULAR MALAYSIA

Peninsular Malaysia has a varied geology. Igneous rocks constitute almost half the total surface area in Peninsular Malaysia. These rocks constitute the most common lithology of the mountain ranges of the peninsula forming their topographic highs (GSDM, 1996). Metamorphic rocks of regional and thermal origin are also widespread (GSDM, 1996). The remaining rock type is sedimentary rock. The metamorphic rocks and sedimentary rocks underlie the other half of the surface area.

As mentioned above, aquifers (underground saturated rock capable of transmitting water) are normally found in sedimentary rocks although these rock types may also form aquicludes (rocks with little or no capacity to transmit groundwater) or aquitards (rocks that retard water flow) (Hasan, 1994).

The unconsolidated sediments are Quaternary deposits laid down in an interval of time from the present to about 2.0 million years ago. This short interval of time has not enable the deposited material to be sufficiently compressed for induration into rocks. They are, as mentioned above, present as a mantle of unconsolidated to semi-consolidated gravel, sand, mud and clay. These unconsolidated to semi-consolidated deposits are found along the coast and inland valleys (GSDM, 1996) and overlie the other rock types. They also find localized expression on terraces or as remnants of erosion deposits at higher levels (Stauffer, 1973).

Figure 1. Rock types of continental United States — grouped according to hydrological characteristics (Copyright, R.C. Heath, Journal of Groundwater, All Rights Reserved).
THE GEOLOGIC AQUIFER POTENTIAL

Geological maps usually highlight the stratigraphic i.e. time-rock relationship that focuses on the age, spatial-temporal juxtapositions of rocks and geological events in time. The rocks are grouped together chronologically in geochronological units i.e. the sum total of rocks formed during a specified increment of geological time (Prothero, 1990). The unconsolidated sediments constituting the Quaternary geochronological unit on a geological map denote an interval of time from the present to about 2.0 million years ago (Some maps depict this period as two smaller geochronological units called the Pliestocene and Holocene).

Geological maps, therefore, depict the temporal constitution of an area as well as their spatial distribution. The secondary feature portrayed in geological maps is the rock types but this portrayal is usually partial in nature. The igneous rocks are customarily shown as stand alone units. The depiction of the other two rock types as independent units is variable. These may be shown as independent units or as undifferentiated units.

The geological rock types are the initial indicators of the subsurface aquifer potential as described above. The differentiation of the lithology into the separate rock types facilitates the evaluation of the potential of the availability of groundwater. This allows for the rock types to be grouped according to their hydrological characteristics. Examples of the United States of America, as illustrated by R.C. Heath, and the United Kingdom by the simplification of geological maps are given in Figures 1 and 2 respectively.

The above two examples were selected as they represented two geological areas of varying aerial extents.

THE GEOLOGIC AQUIFER POTENTIAL IN PENINSULAR MALAYSIA.

Lithological Map

The prerequisite for the identification of groundwater potential requires the differentiation of the geological map into the different rock types. A lithological map shows the distribution of the different types of rocks that enables the potential for the availability to be deduced.

![Figure 2. Important rock aquifer groups of the United Kingdom (modified from Price, 1996).](image-url)
Extraction of a Lithological Map for Peninsular Malaysia

The geological map of Peninsular Malaysia depicts the various stratigraphic units. Lithologically, the major apportionment is between the igneous outcrops and the other two rock types i.e. the sedimentary cover and metamorphic rocks. The former are shown as distinct units (of different ages). The latter are presented as geochronological units which are differentiated into distinct sedimentary (as well as types of sedimentary rocks) and metamorphic rocks units or as undifferentiated entities. The geological map was stripped off its stratigraphy. This enabled the lithological character that was depicted to be scrutinized. The extracted lithologies are shown in the Figure 3.

The metamorphic rocks where they were shown as separate units are shown here combined with igneous rocks as these would form a hydrogeological unit. The distinctive sedimentary rock types shown were conglomerates and limestone/marble.

The other delineated rock types were composite mixtures of sandstone/metasedimentary and shale/mustones, siltstone, phyllite, slate and hornfels. Large tracts of areas are not lithologically demarcated. The tracts are undifferentiated but the composite lithology mentioned in the legend to the map lists some lithological units that may have potential importance as aquifers.

Composite Compositions and Undifferentiated Tracts

The lithologies of these need to be further demarcated to exhibit the main lithologies occupying these areas. The minor outcrops may be omitted to obtain a simplified geological map as in Figures 1 and 2. The minor outcrops of aquifer potential may be of local importance.

HYDROGEOLOGICAL UNITS

The various types of hydrological units as a function of their aquifer potential that may be characterized may be the following:

1. Igneous and Metamorphic Unit
2. Sedimentary Units
 (a) Conglomerates
 (b) Limestone/Marble
3. Composite Sedimentary and Metamorphic Units
 (a) Sandstones/Metasedimentary
 (b) Shale/Mustone/Siltstone/Phyllite/Slate/Hornfels
4. Quaternary Unit
5. Undifferentiated Unit

The spatial lithological extent and distribution of the different hydrological units show that they are interspersed as well as dispersed (Fig. 3). Vast tracks of consanguineous areas cannot be demarcated as hydrogeological units except for the igneous and metamorphic unit and quaternary unit. It is discernible, however, that most of these units stretched in a north south direction. The surface area occupied by the various hydrological units is given in Table 1 and a comparison is made in Figure 4 of the relative proportions of the surface area occupied by each.

The above analysis shows that proportionally a much smaller surface area is constituted from the lithologies with a clear potential for accommodating groundwater. In addition these potential areas are not spatially large in any one area. It is imperative to determine the predominant nature of the undifferentiated lithology to assess its potentiality as well as the degree of metamorphism present in the sandstone.

CONCLUSION

The portrayal of the lithological disposition of the hydrogeological propensity in the peninsula based on the geological map (GDSM, 1996) has been attempted to the extent that the lithology is shown on the said geological map. This to a certain degree shows the potential and distribution of the different rock types as sources of groundwater. For a more exact appreciation of the groundwater resources of the peninsula the resolution of the composite lithologies and undifferentiated tracts is necessary.
Figure 3. Map of Peninsular Malaysia showing the lithology (from Geological Survey of Malaysia, 1996).

Warta Geologi, Vol. 29, No. 1, Jan-Feb 2003
Table 1. Surface area of the hydrological units.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Area (sq. km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igneous and Metamorphic</td>
<td>48,319,327</td>
</tr>
<tr>
<td>Sedimentary</td>
<td></td>
</tr>
<tr>
<td>- Conglomerate</td>
<td>640,088</td>
</tr>
<tr>
<td>- Limestone/marble</td>
<td>2,126,255</td>
</tr>
<tr>
<td>Composite Sedimentary and Metamorphic</td>
<td></td>
</tr>
<tr>
<td>- Sandstone/metasedimentary</td>
<td>8,834,115</td>
</tr>
<tr>
<td>- Shale/mudstone/siltstone/phyllite/slate/hornfels</td>
<td>1,775,451</td>
</tr>
<tr>
<td>Quaternary</td>
<td>22,383,004</td>
</tr>
<tr>
<td>Undifferentiated Lithology</td>
<td>47,883,066</td>
</tr>
</tbody>
</table>

"Hydrogeological Units"

- 36% Igneous & Metamorphic Unit
- 2% Sedimentary: limestone
- 1% Sedimentary: conglomerate
- 7% Composite: sandstone/metasedimentary
- 1% Composite: shale/mudstone/siltstone/phyllite/slate/hornfels
- 17% Quaternary
- 36% Undifferentiated lithology

Figure 4. Proportionality of 'Hydrological Units'.

REFERENCES

Manuscript received 10 May 2002
Soils suitability for landfill liner material: a case study from South Wales, United Kingdom

W. ZUHAIRI W.Y. AND TAN, B.K.
Program Geologi, Pusat Sains Sekitaran dan Sumber Alam
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia

Abstract: Physical and chemical properties greatly influence the suitability of a soil to be used as engineered clay liner in landfills. The physical properties of a soil affect its capability to be compacted to achieve a minimum requirement of hydraulic conductivity of 1×10^{-9} m/sec. Meanwhile, the chemical properties of a soil can influence the natural attenuation of contaminants by the soil via various chemical reactions; i.e. ionic exchange, precipitation, complexation, and adsorption. Soils with high clay contents are capable of being compacted to densities and permeabilities consistent with the function as a liner. Clay content influences plasticity, natural moisture content and permeability of soils. It also affects several chemical parameters of the soils such as the Cation Exchange Capacity (CEC) and Specific Surface Area (SSA). Soils with high pH, high carbonates, organics, amorphous oxides/hydroxides and high CEC/SSA values are capable of functioning as liner materials and possess high natural attenuation capabilities. Finally, the prediction on the suitability of the candidate soils to function as landfill liner material can be successfully made by investigating their physical and chemical properties.

INTRODUCTION

Compacted soils have been utilised as an engineered liner under landfill sites to impede the migration of very polluted leachate into the environment. Natural soils react physically to leachate by retarding flow and chemically by contaminant sorption processes to attenuate the contaminants. The ability of clay soils to function as landfill liner is greatly influenced by their physical and chemical properties. The main objective of this paper is to discuss how physical and chemical parameters affect the suitability of clay soils to function effectively as engineered landfill liner.

Murray (1998) stated that it is usual to specify the use of clay with suitable material characteristics as defined by its plasticity, material variability and clay content. Benson et al. (1994) estimated the hydraulic conductivity based on the minimum values of basic soil properties and compaction conditions. They also stated that the soil properties are often correlated and thus, satisfying one criterion may also satisfy the other criteria.

MATERIALS AND METHODS

Twenty-nine soil samples were collected from landfill sites in South Wales, United Kingdom, namely weathered mudrocks (MR1–MR4) and glacial till (GT1–GT5) from Aberdare; glacial till from Swansea (SGT1–SGT5); and estuarine alluvial soils from Neath (NEA1–NEA5), Newport (PEA1–PEA5) and Cardiff (CEA1–CEA5). The samples were subjected to various physical and chemical tests such as particle size distribution, Atterberg limits and permeability test (falling head test). The physical tests were carried out in accordance with the British Standard BS 1377 (1990).
Meanwhile, chemical test procedures that were used in the study were adopted from the Laboratory Manual of the Geotechnical Research Centre of McGill University, Montreal, Canada. Thus for example, Specific Surface Area (SSA) was determined using Ethylene Glycol Monoethyl Ether (EGME) based on the method by Carter et al. (1965). Amorphous contents (Si, Al, Fe oxides/hydroxides) were determined using the method reported by Segalen et al. (1968), and carbonate contents were determined using the titration method suggested by Hesse (1972).

Cation Exchange Capacity (CEC) was determined using the method from ASTM D4319 (1992); where they stated that clay size particles fill the voids between the coarse particles, therefore reducing the size of the pores controlling flow and decreasing the permeability values.

RESULTS AND DISCUSSIONS

Physical properties

Physical properties influence the hydraulic conductivity performance of the liner. The soil needs to be compacted to reach minimum requirement of about 1x10⁻⁹ m/sec. The acceptance criteria for the soil material for landfill liner should meet the following (DOE, 1995; CIRIA, 1996; Murray, 1992; NRA, 1992):-

(i) Permeability of 1x10⁻⁹ m/sec
(ii) Minimum clay content of 10%
(iii) Liquid limit not greater than 90%
(iv) Plasticity index not greater than 65%

Permeability

The permeability values for all soils tested are depicted in Table 1. These values complied with the minimum requirement value for compacted clay liner as stated above. The permeability results indicated that estuarine alluvial soils (NEA, PEA and CEA) possess lower values compared to other soils (MR, GT and SGT). This is mainly due to the different percentages of finer materials in both groups of soils; where estuarine alluvial samples have high percentages of clay compared to others. This argument is in accord with Benson et al. (1992); where they stated that clay size particles fill the voids between the coarse particles, therefore reducing the size of the pores controlling flow and decreasing the permeability values.

Table 1. The range of permeability values in all soil samples.

<table>
<thead>
<tr>
<th>Soil samples</th>
<th>Hydraulic conductivity (x10⁻⁷ m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR1-MR4</td>
<td>2.4-7.0</td>
</tr>
<tr>
<td>GT1-GT5</td>
<td>2.0-17.3</td>
</tr>
<tr>
<td>SGT1-SGT5</td>
<td>2.7-11.6</td>
</tr>
<tr>
<td>NEA1-NEA4</td>
<td>1.0-2.5</td>
</tr>
<tr>
<td>PEA1-PEA5</td>
<td>0.6-2.6</td>
</tr>
<tr>
<td>CEA1-CEA5</td>
<td>1.8-2.2</td>
</tr>
</tbody>
</table>

Particle Size Distribution

In general terms, materials with high clay contents or high silt/clay contents will have a lower permeability. Soils that contain high percentage of gravel should not be used as liner materials. Clay is an important component in candidate soil liner and it is essential that the clay content is sufficient to achieve the required permeability values. Table 2 shows the percentage of gravel, sand, silt and clay in all soil samples. It shows very clearly that estuarine alluvial soils (EA) contain high percentages of silt and clay compared to soils of weathered mudrocks (MR) and glacial till (GT).

According to NRA (1992), a candidate soil for liner must possess at least 10% of clay fractions. From Table 2, one can say that all soil samples are suitable for use in engineered liner; however estuarine alluvial soils are even more suitable due to an absence of coarse particles, i.e. gravel and sand. Soils with high gravel contents would have higher permeability values; and this is in accord with the argument made by Benson et al. (1994) where permeability values increase with the increasing contents of gravel and sand.

Figure 1 and 2 show the correlation between the permeability values against clay and sand...
Table 2. Particle size distribution of soil samples.

<table>
<thead>
<tr>
<th>Soil samples</th>
<th>Gravel %</th>
<th>Sand %</th>
<th>Silt %</th>
<th>Clay %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT1–GT5</td>
<td>19–26</td>
<td>27–41</td>
<td>17–36</td>
<td>11–30</td>
</tr>
<tr>
<td>SGT2–SGT5</td>
<td>24–40</td>
<td>31–37</td>
<td>13–25</td>
<td>9–16</td>
</tr>
<tr>
<td>NEA1–NEA4</td>
<td>0–1</td>
<td>5–8</td>
<td>42–49</td>
<td>45–50</td>
</tr>
<tr>
<td>PEA1–PEA5</td>
<td>0</td>
<td>2–4</td>
<td>37–46</td>
<td>52–61</td>
</tr>
<tr>
<td>CEA1–CEA5</td>
<td>0</td>
<td>0–2</td>
<td>41–50</td>
<td>49–59</td>
</tr>
</tbody>
</table>

Figure 1. The relationship between the permeability with clay contents for all soil samples used in this study.

Figure 2. The relationship between the permeability with sand contents for all soils.

contents in all soil samples. Permeability values decreased with clay contents as depicted in Figure 1. Meanwhile in Figure 2, the permeability values increased when the content of sand increased.

Atterberg Limits

The results of Liquid Limit (LL), Plasticity Index (PI), soil classification and clay activity are presented in Table 3. The LL and PI values are best presented using plasticity chart, as depicted in Figure 3. According to Murray et al. (1992), materials which are plotted below the A-line are defined as unsuitable; i.e. materials with greater permeability. Soils that plot above the A-line are deemed suitable or marginal. Based on Figure 3, all soil samples are located very close to the A-line.

Sample MR, PEA, and CEA were categorised as suitable while sample SGT and GT were classified as marginal, and NEA was located below the A-line inside the unsuitable area. Due to the fact that all samples were plotted very close to the A-line, these materials were considered acceptable to be used as engineered liner material. Activity is an index of the surface activity of the clay fractions. All estuarine alluvial samples (NEA, PEA, CEA) were classified as inactive clays with an activity of less than 0.75. Other soil samples namely, MR, GT, and SGT were classified as inactive-normal with broad range of activity values from 0.4–1.0. According to Benson et al. (1994), a minimum activity of 0.3 is a lower limit to achieve the minimum permeability of less than 1×10^{-9} m/sec. Permeability would decrease with the increase in activity. All samples as depicted in Table 3 show an activity larger than 0.3; therefore, capable of achieving the minimum permeability required for the landfill liner material.
Table 3. The classification of soil samples based on Atterberg limit values and the clay activities.

<table>
<thead>
<tr>
<th>Soil samples</th>
<th>LL (%)</th>
<th>PI (%)</th>
<th>Class</th>
<th>Activity (PI/Clay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR1–MR4</td>
<td>31–32</td>
<td>12–13</td>
<td>CL</td>
<td>0.6–0.9</td>
</tr>
<tr>
<td>GT1–GT5</td>
<td>27–36</td>
<td>10–14</td>
<td>CI–CL</td>
<td>0.4–1.0</td>
</tr>
<tr>
<td>SGT1–SGT5</td>
<td>20–38</td>
<td>7–20</td>
<td>ML–CL</td>
<td>0.6–0.8</td>
</tr>
<tr>
<td>NEA1–NEA5</td>
<td>30–70</td>
<td>11–33</td>
<td>ML–MV</td>
<td>0.6–0.7</td>
</tr>
<tr>
<td>PEA1–PEA5</td>
<td>51–75</td>
<td>27–38</td>
<td>MV–CH</td>
<td>0.5–0.7</td>
</tr>
<tr>
<td>CEA1–CEA5</td>
<td>46–55</td>
<td>23–30</td>
<td>CL</td>
<td>0.4–0.5</td>
</tr>
</tbody>
</table>

Table 4. Average values of the chemical properties of the five types of soils used in this study.

<table>
<thead>
<tr>
<th>Properties</th>
<th>MR1</th>
<th>GT1</th>
<th>NEA4</th>
<th>PEA3</th>
<th>CEA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (1:10 ratio)</td>
<td>7.4</td>
<td>7.78</td>
<td>7.93</td>
<td>8.72</td>
<td>8.62</td>
</tr>
<tr>
<td>Carbonates (%)</td>
<td>1</td>
<td>2.5</td>
<td>3</td>
<td>16.5</td>
<td>18</td>
</tr>
<tr>
<td>Amorphous oxides/hydroxides (%)</td>
<td>9.6</td>
<td>10.8</td>
<td>9.9</td>
<td>13.4</td>
<td>8.5</td>
</tr>
<tr>
<td>Organic (%)</td>
<td>2.32</td>
<td>2.77</td>
<td>5.11</td>
<td>3.78</td>
<td>3.63</td>
</tr>
<tr>
<td>SSA (m²/g)</td>
<td>46.38</td>
<td>69.87</td>
<td>73.34</td>
<td>74.97</td>
<td>66.62</td>
</tr>
<tr>
<td>CEC (meq/100 g)</td>
<td>11.89</td>
<td>23.92</td>
<td>14.84</td>
<td>39.43</td>
<td>38.5</td>
</tr>
<tr>
<td>Clay mineralogy*</td>
<td>K > I > C</td>
<td>K > I > C</td>
<td>I > C > K</td>
<td>I > C > K</td>
<td>I > C > K</td>
</tr>
</tbody>
</table>

SSA = specific surface area; CEC = cation exchange capacity; K = Kaolinite; I = Illite; C = Chlorite
(*the estimation of mineral abundances is based on CEC and SSA values)

Figure 3. Material suitability illustrated on the plasticity chart for soil samples from South Wales.
Chemical Properties

The chemical properties influence the attenuation capability of the soil to attenuate the movement of the contaminants. Chemical properties such as pH of the soils, cation exchange capacity (CEC), specific surface area (SSA), carbonate contents, organic contents, amorphous oxides hydroxides and clay mineralogy are important factors in the attenuation of the inorganic pollutant in leachate. All of these chemical properties influence the attenuation of pollutants via ionic exchange, adsorption, complexation and precipitation. Thus, high composition of these soil solids may increase the capability for pollutants retention.

Table 4 shows the average values of chemical properties for the five soil types. Note that sample NEA, PEA, and CEA possess high soil pH, high carbonates, high organic contents and high CEC-SSA values compared to sample MR and GT. Samples that contain high values of these chemical properties may influence the capability of the soil to attenuate the pollutants via various retention mechanisms. Therefore, estuarine alluvial soils have better potentials in attenuating the contaminants in leachate compared to the other soils (MR and GT).

This is in accord with a finding by Bright et al. (1996) who stated that the maximum attenuation by clay soils could be achieved by high clay content, organic carbon content, and carbonate content. Anderson and Christensen (1988) stated the same whereby clay content, organic matter and hydrous Fe and Mn oxides provide most of the high energy binding sites for metal sorption.

Correlation between physical and chemical properties

There is a close relationship between the physical and chemical properties of the clay soils. Generalised relationship can be expected between

the plasticity, the chemistry of the clay particles and permeability. The more plastic the clay, the greater the CEC and SSA (Fig. 4) and the less the permeability. Clay that contains mainly kaolinite (samples MR and GT in Table 4) is of relatively low plasticity, CEC and SSA, and has a higher permeability than the clay soil comprising illite (main composition in samples NEA, PEA and CEA; Table 4).

Particle size is an important factor that influences the retention of heavy metals (Cope et al., 1983). The effects of clay contents on the retention of heavy metals are: (i) clay has high SSA that provides large particle surfaces for chemical, physical and biological activity and increase the opportunity for pollutant interaction, (ii) greater surface area (SSA) enhances the chemical reactions such as ionic exchange, adsorption and precipitation, (iii) high clay content is associated with low hydraulic conductivity, (iv) permeability is controlled by SSA and clay content, and finally (v) buffering capacity of the soil is favoured by finer clay rather than coarser textured soil.

Figure 4. The correlation between the plasticity of the soil samples with the cation exchange capacity (CEC) and specific surface area (SSA).

Warta Geologi, Vol. 29, No. 1, Jan–Feb 2003
The soils in the current study show that clay content increases the value of SSA and CEC values (Fig. 5). This is true due to (i) clay particles which are very fine (< 2 mm) have very large specific surface area and (ii) high clay contents can produce higher negatively charged surfaces (i.e. clay particles carry net negative charge primarily caused by isomorphous substitution). The negative charge is balanced by exchangeable cations, which lead to the retention of metal cations (i.e. cation exchange mechanism). There is also a linear relationship between the clay content and the amount of carbonates and organic matter in the soils investigated.

CONCLUSION

From the study, there are four important physical properties that affect the selection of liner material:
(i) Atterberg limits (12% < PI < 65% and 20% < LL < 90%)
(ii) clay contents (%Clay >10%)
(iii) gravel contents (%Gravel <30%)
(iv) hydraulic conductivity (< 1.0x10^{-9} m/s).

All candidate soils must be thoroughly investigated and tested to fully comply with the minimum physical requirements as suggested above. This is important in order to achieve a very competent liner material that will protect the natural environment (e.g. groundwater system) from polluted leachate.

Chemical properties of the clay soils which may affect the natural attenuation capability need to be quantified. The chemical properties that greatly influence the retention capability of the soils are (i) pH of the natural soils, (ii) cation exchange capacity of the soils, (iii) specific surface area, (iv) clay mineralogy of the clay soils, and (v) carbonate, organic matter and amorphous oxides/hydroxides contents. All materials tested display permeability values well below the 1.0x10^{-9} m/sec threshold. However, estuarine alluvial soils (NEA4, PEA3 and CEA3) are preferable to weathered mudrock (MR1) and glacial till (GT1), based on: (i) its capability to be compacted to achieve lower permeability and, (ii) effective attenuation of contaminant leachate as suggested by the chemical properties of the soils.

Estuarine alluvial soils from Cardiff, Neath and Newport are therefore better candidates to function as landfill liner compared to soils from weathered mudrocks and glacial till in the Aberdare area. The weathered mudrock should be eliminated, but glacial till could still be used, though it must be sieved prior to usage to remove all the coarse materials and large pebbles. Estuarine alluvial soils from Neath, Newport and Cardiff are highly recommended for use as landfill liner materials.

ACKNOWLEDGEMENT

We would like to acknowledge Prof. R.N. Yong for his contribution and assistance. The first author conveys special thanks to Dr. Steve Bentley and Dr. Charles Harris for their great supervision and advice and acknowledges

![Figure 5. Linear correlation between the clay content with cation exchange capacity (CEC) and specific surface area (SSA).](image-url)
REFERENCES

Manuscript received 27 August 2002
Technique and roles of geophysics in unravelling subsurface structures and information of the earth

ABDUL RAHIM SAMSUDIN

Laporan (Report)

Prof. Dr. Abdul Rahim Samsudin, Head of Geology Programme, School of Environment & Natural Resource Science, Universiti Kebangsaan Malaysia, Bangi, Selangor, and currently Chairman of GSM Geophysical Working Group, gave the above talk on Saturday 22nd February 2003 at 11.00 am at Geology Programme, Universiti Kebangsaan Malaysia. The talk was organised by the Geophysical Working Group of the Geological Society of Malaysia in collaboration with the Geology Programme of Universiti Kebangsaan Malaysia and was attended by a mixed crowd of Society members and postgraduate and undergraduate students of Universiti Kebangsaan Malaysia (~ 40 participants). There was a good round of questions and lively discussions after the presentation.

Abstrak (Abstract)

Geophysics is a branch of earth science which uses principles of physics to study the interior of the earth. This field of science has developed for several decades and has become an important technological tool to unravel the earth’s internal structures in order for geologists to either credit or discredit the global tectonic theory of the earth. By measuring different physical properties of the earth material, geophysicists have successfully mapped subsurface structures deep enough to enable exploitation of hydrocarbon resources which are the lifeline of the modern industrial nations in the world. The rapid development of electronically based geophysical field equipment assisted with microcomputer data processing technology have increased the efficiency and cost effectiveness of the geophysical techniques, especially in exploration of natural resources as well as resolving many geotechnical and geoenvironmental problems. There is great potential for this technology to be used for archaeological investigation.
New publications from the Geological Society of Malaysia

Geological Map of Borneo
Scale 1:1.5 million

Printed on two sheets (each 950 mm x 680 mm) with an overlap of 50 mm between the two sheets. On glossy plain paper or waterproof laminated paper for field use. Together with accompanying notes, 12p A4.

Price: Members: RM15.00; non-members: RM30.00 excluding postage and packing.

For overseas orders, please send your order to the Geological Society of Malaysia c/o Department of Geology, University of Malaya 50603 Kuala Lumpur, Malaysia Tel: (603) 7957 7036 Fax: (603) 7956 3900 e-mail: geologi@po.jaring.my to obtain a quotation of the total cost in the currency of your choice and stating the type of paper finish required.

Visit the Society website www.angelfire.com/la/gsm to view the maps and other recent publications.

The Geology of Borneo Island
compiled by Robert B. Tate

YEAR 2001

Price: RM60.00 exclusive of postage
In recent years the application of geophysics for solving geotechnical problems has increased especially in mapping subsurface weak structures and in evaluating problematic zones of development sites. Improved geophysical technology and interpretation procedures have been successfully used in resolving environmental problems especially on the issue of groundwater contamination and assessment of contaminated land of a development area.

The greatest challenge for the geophysicists in the 21st century is the paradigm shift in their research orientation from a strong bias towards the hydrocarbon industry to other important areas of applied sciences such as for geotechnical engineering and environmental applications. The wealth accumulated from the hydrocarbon industry should be invested in such studies as well as venturing in research for other possible sources of environment-friendly energy. In addition, there is an obvious need for both engineering and environmental geophysics to be introduced to all the engineers and environmentalists. In order for such geophysics to become more useful to the geotechnical engineers, better means of communication are necessary between these two groups of scientists. The rapidly expanding discipline of archaeo-geophysics needs to be brought to the attention of all archaeologists so that the geophysical techniques can be used as part of the routine procedure in the archaeological exploration programme.
The following applications for membership were approved:

Full Members

1. Christi Gell
2. Tan Yaw Tzong
 18th floor, Faber Tower 1, Faber Tower, Jalan Desa Bahagia, Taman Desa, off Jalan Klang Lama, 58100 Kuala Lumpur.
3. Jonathan Redfern
 Oxford Brooked University, Geology (BMS) Gipsylane, Headington, Oxford OX30XP.
4. Adnan A.M. Agrawi
5. Mohd. Rohani bin Elias
 Menara Exxon Mobil, Geoscience Dept., KLCC, 50088 Kuala Lumpur.
6. Mohazam bin Mohd Iqbal
 No. 64, Jalan Telipok, Taman Sri Mersing, Mersing, Johor.
7. Azli bin Abu Bakar
 PCSB, Aras 25, Menara 1, KLCC, 50088 Kuala Lumpur.
8. Padlo Tognini
 Suite 9.02 Level 9, Menara Tan & Tan, 207 Jalan Tun Razak, 50400 Kuala Lumpur.
9. Khalid Ameen
 No. 2, Kallang Pudding Road, 09-04 Mactech Ind. Building, Singapore 349307.
10. Mohamad Md Tan
 Program Geologi, Fakulti Sains & Teknologi, UKM, Bangi.

Student Members

1. Bahaa-Eldin Elwadi Abdel Rahim
 Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor.
2. Yong Cheng Yeu
 Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor.
3. Siti Hasmah Ayub
 Jabatan Geologi, Universiti Malaya, 50603 Kuala Lumpur.
4. Isney Zaireen Rose Zaini
 Jabatan Geologi, Universiti Malaya, 50603 Kuala Lumpur.
5. Wan Nurhasbey Wan Yusof
 Jabatan Geologi, Universiti Malaya, 50603 Kuala Lumpur.
6. Nor Azlida Ismail
 Jabatan Geologi, Universiti Malaya, 50603 Kuala Lumpur.
7. Noor Nashira Azda Ab. Halim
 Jabatan Geologi, Universiti Malaya, 50603 Kuala Lumpur.
8. Azlizawati Roslan @ Abd. Aziz
 Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor.
9. Mohamad Faizal Idris
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

10. Hartini Hashim
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

11. Md. Fairul Adnan
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

12. Haryanty Hashim
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

14. Lai Kian Voon
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

15. Noor Farinda Salim
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

16. S. Ahmad Yasir S. Ab. Hamid @ S. Said
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

17. Sabariah Mohd. Said
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

18. Hng Poh Wah
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

19. Loh Yean Sze
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

20. Juliana Shafii
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

22. Anidah Tariman
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

23. Jatmika Setiawan Sunarimo
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

24. Suharsono
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

26. Yip Chia Chun
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

27. Mohd Shafiq Farhan Mohd Zainudin
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.

28. Gab Lee Kien
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

29. Tan Poh Li
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

30. Ng Chee Seng
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

31. Yee Shun Wen
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

32. Tan Boon Hu
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

33. Tham Kam Theng
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

34. Tan Han Kee
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

35. Lee Kok Yeong
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

36. Wong Meng Li
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

37. Chan Eng Hoe
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor.

38. Abadi Muhammad Irfan Ishak
Jabatan Geologi, Universiti Malaya, 50603
Kuala Lumpur.
PETUKARAN ALAMAT (Change of Address)

The following members have informed the Society of their new addresses:

1. Ian Cross
 IHS Energy, 5333 Westheimer Road, Suite 100, Houston, Texas 77056.

2. Tong Pow Mun

3. Aniza Abdul Rahman
 SH4, Jalan Mutia Raya, Taman Bukit Ampang, 68000 Ampang, Selangor

 23 Jalan Tengkolok 10/8, Seksyen 10, 40100 Shah Alam, Selangor

5. Paul Ponar Sinjeng
 48, Lane 4, Lintang Park South, 93200 Kuching, Sarawak

6. Leong Lap Sau
 No. 17, Lintang Delima 15, Island Glades, 11700 Penang, Malaysia

CURRENT ADDRESSES WANTED

The GSM is seeking the address of the following member. Anyone knowing the new address please inform the Society.

1. David G. Bowen
 7 Lyne Terrace, Penincuik, Midlothian EH26 8HF, U.K.
The Society has received the following publications:

<table>
<thead>
<tr>
<th>Event</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 27–30</td>
<td>NATIONAL EARTH SCIENCE TEACHERS ASSOCIATION (Annual Meeting), Philadelphia, Pennsylvania, USA. (Contact: NESTA, 2000 Florida Ave., N.W., Washington, D.C. 20009, USA. Tel: +1-202-462-6910; Fax: +1-202-328-0566; E-mail: fireton@kosmos.agu.org)</td>
</tr>
<tr>
<td>March 30 – April 2</td>
<td>SALT WATER INTRUSION IN COASTAL AQUIFERS: MONITORING, MODELING AND MANAGEMENT (2nd International Conference), Merida, Yucatan, Mexico. Workshops (27–29 March) precede the Conference, field trips (3–5 April) follow the conference. (Contact: Prof. Luis E. Marin, Sección de Hidrogeología y Sistemas Hidrotermales, Departamento de Recursos Naturales, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico CP 04510. Tel: 52-555-622-4212; Fax: 52-555-550-2486; E-mail: lmarin@tonatiuh.igeofcu.unam.mx; Website: www.igeofcu.unam.mx/swica2/)</td>
</tr>
<tr>
<td>April 6–11</td>
<td>EUROPEAN GEOPHYSICAL SOCIETY + AMERICAN GEOPHYSICAL UNION + EUROPEAN UNION OF GEOSCIENCES (Joint Assembly), Nice, France. (Contact: EGS office, Max-Planck-Str. 13, 37191 Katlenburg-Lindau, Germany. Tel: +49-5556-1440; Fax: +49-5556-4700; E-mail: egs@copernicus.org; Website: www.copernicus.org/EGS)</td>
</tr>
<tr>
<td>April 7–9</td>
<td>BRAIDED RIVERS (International Conference), Birmingham, UK. (Contact: Greg Sambrook Smith, School of Geography & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT U.K. Tel: +44 (0)121 4158023; E-mail: g.smith.4@bham.ac.uk; Website: www.cwr.bham.ac.uk/braid/)</td>
</tr>
<tr>
<td>April 14–17</td>
<td>URANIUM GEOCHEMISTRY, Nancy, France. (Contact: Michel Cuney. Tel: 33 383 68 47 09; E-mail: mcuney@persmail.uhp-nancy.fr)</td>
</tr>
<tr>
<td>April 28–30</td>
<td>SUBMARINE SLOPE SYSTEMS: PROCESSES, PRODUCTS AND PREDICTION (International Conference), University of Liverpool, Liverpool, UK. Sponsored by the Geological Society of London and International Association of Sedimentologists. (Contact: David Hodgson, Dept. of Earth Sciences, University of Liverpool, Liverpool, UK. Tel: +44 151 794 5141; E-mail: hodgson@liv.ac.uk; Website: http://www.slope2003.net/)</td>
</tr>
<tr>
<td>April 30 – May 2</td>
<td>WATER RESOURCES MANAGEMENT (2nd International Conference), Las Palmas, Gran Canaria. (Contact: Conference Secretariat, Water Resources03, Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton SO40 7AA, UK. E-mail: shobbs@wessex.ac.uk; Website: www.wessex.ac.uk/conferences/2003/waterresources03)</td>
</tr>
<tr>
<td>May 11–14</td>
<td>AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS AND SOCIETY FOR SEDIMENTARY GEOLOGY (SEPM) (Joint Annual Meeting and Exhibition), Salt Lake City, Utah, USA. (Contact: AAPG Conventions</td>
</tr>
</tbody>
</table>
May 12-16

GEOFLUIDS IV (4th international conference on fluid evolution, migration and interaction in sedimentary basins and orogenic belts), Utrecht University, Utrecht, The Netherlands. Sponsored by Netherlands Institute of Applied Geoscience TNO-National Geological Survey. (Contact: Ms. J.M. Verweij, P.O. Box 80015, 3508 TA Utrecht, The Netherlands. Tel: +31-30 256 4600; Fax: +31-30 256 4605; E-mail: j.verweij@nitg.tno.nl; Website: www.nitg.tno.nl).

May 18-23

COASTAL SEDIMENTS '03 (5th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes), Clearwater Beach, Florida, USA. (Contact: Darlene K. Gregory, Conference Secretariat. Tel: +1-361 939 9004; Fax: +1 - 361 939 9355; E-mail: dgregory@coastalsediments.net; Website: http://www.coastalsediments.net).

May 18-24

GEOLOGY OF INDUSTRIAL MINERALS, "BETTING ON INDUSTRIAL MINERALS" (39th Forum), Sparks, Nevada, USA. Sponsored by the Nevada Bureau of Mines and Geology, Nevada Division of Minerals, and Nevada Mining Association. (Contact: Terri Garside, NBMG/MS 178, University of Nevada, Reno, NV 89557-0088; Tel: +1-775 784 6691, ext. 126; Fax: +1-775 784 1709; E-mail: tgarside@unr.edu; Website: www.nbmg.unr.edu/imf2003.htm).

May 19-23

VII INTERNATIONAL SYMPOSIUM CULTURAL HERITAGE IN GEOSCIENCES, MINING AND METALLURGY: LIBRARIES-ARCHIVES-MUSEUMS "Museums and their collections", Leiden, The Netherlands. (Contact: Dr. Cor F. Winkler Prins, Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA LEIDEN, The Netherlands. Tel: +37.71.5687643; Fax: +31.71.5687666; E-mail: winkler@nm.nl).

June 4-6

FLUID INCLUSIONS (17th Biennial European Current Research Conference), Budapest, Hungary. (Contact: Department of Petrology and Geochemistry, Budapest, Pázmány Péter setány 1/C, Budapest H-1117, Hungary. Tel: +36-1 209 0555 ext. 8338; Fax: +36-1 381 2108; E-mail: ecr017@geology.elte.hu; Website: ecr017.geology.elte.hu).

June 7-12

CLAY MINERALS SOCIETY (CMS) AND MINERALOGICAL SOCIETY OF AMERICA (MSA), "Classic Clay and Minerals" (Joint Meeting), Athens, Georgia, USA. (Contact: Paul A. Schroeder, General Chairman, Department of Geology, University of Georgia, Athens, GA 30602-2501, USA. Tel: +1-706 542-2652; E-mail: schnie@gly.uga.edu; Website: http://www.gly.uga.edu/).

June 8-13

ALLUVIAL FANS (International Conference), Sorbas, Almeria, Spain. (Contact: Martin Stokes, Department of Geology, University of Plymouth, Drake Circus, Devon PL4 4AA, UK. E-mail: alluvialfans@plymouth.ac.uk; Website: alluvialfans.net).

June 9-12

ORIGIN OF PETROLEUM, BIOGENIC AND/OR ABIOTIC AND ITS SIGNIFICANCE IN HYDROCARBON EXPLORATION AND PRODUCTION (Hedberg Conference sponsored by the American Association of Petroleum Geologists and Institute of Petroleum), London, UK. (Contact: Debbi Boonstra, AAPG Education Dept., P.O. Box 979, Tulsa, OK 74101-0979; Fax: +1-918 560 2678; E-mail: debbi@aapg.org; Website: www.aapg.org/education/hedberg/london/index.html).

June 15-17

7TH ICOBTE — INTERNATIONAL CONFERENCE ON BIOGEOCHEMISTRY OF TRACE ELEMENTS, Uppsala, Sweden. (Contact: George R. Gobran. Fax: 46(18) 6734 30; E-mail: George.Gobran@eom.slu.se or ICOBTE7@eom.slu.se; Website: http://www.eom.slu.se).

June 16-18

5TH INTERNATIONAL CONFERENCE ON THE ANALYSIS OF GEOLOGICAL AND ENVIRONMENTAL MATERIALS, Rovaniemi, Finland. (Contact: Website: http://www.gsf.fi/geonanalysis2003).
June 20-25	ROLE OF LIGHT ELEMENTS IN ROCK-FORMING MINERALS (International Symposium), Nove Mestona, Czech Republic. (Contact: Dr. Milan Novák, Chairman, LERM, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic. Fax: +420-5 41211; E-mail: mnovak@sci.muni.cz; Website: sci.muni.cz/-lerm/index.htm).
June 22-27	KIMBERLITE (8th International Conference), Victoria, British Columbia, Canada. (Contact: 8IKC, Conference, Secretariat, c/o Venue West Conference Services Ltd., 645 - The Landing, 375 Water Street, Vancouver, BC, Canada V6B 5C6. Tel: +1-604 681-5226; Fax: +1-604 681-2503; E-mail: 8IKC@venuewest.com; Website: www.venuewest.com/8IKC)
June 30 - July 11	INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS (IUGG) (23rd General Assembly), Sapporo, Japan. (Contact: Dr. Kiyoshi Suyehiro, General Secretary of LOC XXIII General Assembly, Japan Marine Science and Technology Center (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan. Fax: +81-468 66 5541; E-mail: IUGG_service@jamstec.go.jp; Website: www.jamstec.go.jp/jamstec-e/iugg/index.html)
July 8-10	CARBONATE SEDIMENTOLOGISTS (12th Bathurst Meeting), Dunham, UK. (Contact: Maurice Tucker or Moyra Wilson, Department of Geological Sciences, University of Durham, Durham DH1 3LE, U.K. Tel: +44-191374 2524 or 2501; E-mail: M.E.Tucker@durham.ac.uk or Moyra.Wilson@durham.ac.uk; Website: www.dur.ac.uk/bathurst.2003/)
July 14-25	IGCP 460 MEETING AND FIELD EXCURSION (Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana: Intra and Intercontinental Correlation of Geological, Geochemical and Isotopic Characteristics, Southern Atlantic), Lubumbashi, D.R. Congo. (Contact: Dr. Jacques Cailleux, Organiser of the event, Groupe G. FORREST international, E.G.M.F., Lubumbashi, D.R. Congo. Fax: 243-23 42 275; Tel: 243-970 32 625; E-mail: egm@forrestrdc.com)
July 23-31	INTERNATIONAL ASSOCIATION FOR QUATERNARY RESEARCH (INQUA) (16th Congress) “Shaping the Earth: A Quaternary Perspective”, Reno Hilton, Reno, NV, USA. (Contact: Nick Lancaster, Desert Research Institute. Tel: +1-775 673 7304; E-mail: nick@dri.edu; Website: www.dri.edu/DEES/INQUA2003/inqua_home/htm)
July 30-31	GEODYNAMICS & METALLOGENY (International Conference), Ulaan Bataar, Mongolia. Organized by the Mongolian National Group of the International Association on the Genesis of Ore Deposits (IAGOD) and co-sponsored by IAGOD; post-conference expert fieldtrip 1-7 August 2003 to Oyu Tolgoi. (Contact: O. Gerel, E-mail: gerel@mtu.edu.mn)
August 9-21	FIELD CONFERENCE IN URAMQUI, CHINA, IGCP-473 annual field conference in Urumqi with excursion to Chinese Tianshan and Altay (Xinjiang). Sponsored by the International Association on the Genesis of Ore Deposits (IAGOD). (Contact: Prof. Mao Jingwen, CAGS Beijing. E-mail: jingwenmao@263.net; Website: www.nhm.ac.uk/mineralogy/cercams/index.htm)
August 10-13	GeoSciEd IV, Calgary, Canada. (Contact: Website: www.geosciied.org)
August 18-21	9TH INTERNATIONAL SYMPOSIUM ON THE ORDOVICIAN SYSTEM, 7TH INTERNATIONAL GRAPTOLITE, AND FIELD MEETING OF THE SUBCOMMISSION ON SILURIAN STRATIGRAPHY, San Juan City, Argentina. (Contact: ISOS: Guillermo L. Albanesi. E-mail: galbanesi@arnet.com.ar or Matilde S. Beresi. E-mail: mberesi@labocriyct.edu.ar; IGC-SSS field meeting: Gladys Ortega. E-mail: gcortega@arnet.com.ar or Guillermo F. Aceñolaza. E-mail: acecha@unt.edu.ar)
August 26-30	PRESENT STATE AND FUTURE EVOLUTION OF PALEogene STRATIGRAPHY, A symposium of the International Subcommission on Paleogene
Stratigraphy, Leuven, BELGIUM. (Contact: Noël Vandenberghe, Dept. Geografie-Geologie, Afd. Historische Geologie, KU Leuven, Redingestraat 16, B-3000 Leuven Belgium. E-mail: noel.vandenberghe@geo.kuleuven.be; Website: www.uni-tuebingen.de/geo/isps/news)

August 29 - September 3
INTERNATIONAL GEOCHEMICAL EXPLORATION SYMPOSIUM (21st of the Association of Exploration Geochemists), Dublin, Ireland. (Contact: Eibhlin Doyle, Secretary LOC. E-mail: eibhlindoyle@gsi.ie; Website: http://www.aeg.org/)

September 5-6
TERRANE PROCESSES AT THE PACIFIC MARGIN OF GONDWANA (International Conference), Cambridge, England. Sponsored by the British Antarctic Survey and the Geological Society. (Contact: Dr. Alan P.M. Vaughan, British Antarctic Survey, Cambridge CB3 0ET, England. Tel: +44-1223 221419; Fax: +44-1223 221646; E-mail: a.vaughan@bas.ac.uk)

September 7-11
ENVIRONMENTAL GEOCHEMISTRY (6th International Symposium), Edinburgh, Scotland, UK. (Contact: John Farmer, Dept. of Chemistry, The University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JJ Scotland. E-mail: J.G.Farmer@ed.ac.uk; Tel: 0131-650-1000; Fax: 0131-650-4757)

September 8-12
ORGANIC GEOCHEMISTRY (21st International Meeting), Krakow, Poland. Sponsored by the European Association of Organic Geochemists. (Contact: IMOG 2003, Society of Research on Environmental Changes "Geosphere", Al. Mickiewicza 30, 30-059 Kraków, Poland. Fax: +48-12 623 78 28; E-mail: imog@imog.agh.edu.pl; Website: http://www.imog.agh.edu.pl)

September 8-12
INTERNATIONAL CONGRESS ON ROCK MECHANICS "Technology Roadmap for Rock Mechanics" (10th of the International Society for Rock Mechanics), Sandton (Gauteng-Johannesburg), South Africa. (Contact: Mrs. Karen Norman, The Conference Co-Ordinator, Technology Roadmap for Rock Mechanics, P.O. Box 61127, ZA-2107 Marshalltown, South Africa. Tel: +27-11 8341273 or 8341277; Fax: +27-11 833 8156 or 838 5923)

September 15-18
INDUSTRIAL MINERALS AND BUILDING STONES — IMBS 2003, Istanbul, Turkey. (Contact: Erdogan Yuzer, Maden fakultesi, Ayazaga KampüsU, 80626 Maslak/Istanbul, Turkey. Tel/Fax: 90 212 285 61 46; E-mail: yuzer@itu.edu.tr)

September 15-19
GROUNDWATER IN FRACTURED ROCKS (International Conference of IAH), Prague, Czech Republic. (Contact: Jiri Krasny. E-mail: krasny@natur.cuni.cz)

September 17-19
SEDIMENTOLOGY (22nd Annual Meeting of the International Association of Sedimentology), Opatija, Croatia. (Contact: Davor Pavelic, IAS-2003, Institute of Geology, HR-1000 Zagreb, Sachsova 2, Croatia. Fax: +385 1 6144718; E-mail: dpavelic@yahoo.com; Website: www.igi.hr/ias2003)

September 21-24
AAPG INTERNATIONAL CONFERENCE EXHIBITION, "CROSSROADS OF GEOLOGY, ENERGY AND CULTURES", Barcelona, Spain. Sponsored by the American Association of Petroleum Geologists. (Contact: AAPG Convention Department, P.O. Box 979, Tulsa, OK, 74101-0979, USA. Fax: +1-918-560-2684; E-mail: convene@aapg.org; Website: www.aapg.org/)

September 22-26
1ST INTERNATIONAL CONFERENCE — GROUNDWATER IN GEOLOGICAL ENGINEERING, Ljubljana, Slovenia. (Contact: Slovene Committee of IAH, Andrej Juren, Kebetova 24, SI-1000 Ljubljana, Slovenia. E-mail: andrej.juren@siol.net or Nadja Zalar, E-mail: nadja.zalar@siol.net; Website: http://www.iah.org)

September 28 – October 3
SOCIETY OF EXPLORATION GEOPHYSICISTS (73rd Annual Meeting and International Exposition), Dallas, Texas, USA. (Contact: SEG Business Office, Tel: +1-918 497 5500; Fax: +1-918 497 5500; Fax: +1-918 497 5557; Website: seg.org/)
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 4-9</td>
<td>American Institute of Professional Geologists (40th Annual Meeting)</td>
<td>Glenwood Springs, Colorado, USA.</td>
<td>Contact: Tom Fails, 4101 E. Louisiana #412, Denver, CO 80246. Tel: +1-303 759 9733; Fax: +1-303 759 9731; E-mail: thomgeol@aol.com; Website: www.aipg.org/</td>
</tr>
<tr>
<td>October 5-8</td>
<td>American Association of Petroleum Geologists (International Conference & Exhibition)</td>
<td>London, UK.</td>
<td>Contact: AAPG Convention Department, P.O. Box 979, Tulsa, OK 74101-0979, USA. Tel: +1-918 560 2679; E-mail: Website: www.aapg.org/</td>
</tr>
<tr>
<td>October 24-27</td>
<td>International Symposium on Hydrometallurgy — In Honor of Ian Ritchie</td>
<td>Vancouver, British Colombia, Canada.</td>
<td>Contact: Courtney Young. Fax: 406 496 4133; E-mail: cyoung@mtech.edu; Website: cms.tms.org/</td>
</tr>
<tr>
<td>November 2-5</td>
<td>Geological Society of America (Annual Meeting)</td>
<td>Seattle, Washington, USA.</td>
<td>Contact: GSA Meetings Dept., P.O. Box 9140, Boulder, CO 80301-9140, USA. Tel: +1303 447 2020; Fax: +1 303 447 1133; E-mail: meetings@geosociety.org; Website: http://www.geosociety.org/meeting/index.htm</td>
</tr>
<tr>
<td>December 8-12</td>
<td>American Geophysical Union (Fall Meeting)</td>
<td>San Francisco, California, USA.</td>
<td>Contact: AGU Meetings Department, 2000 Florida Avenue, NW, Washington, DC 20009 USA. Tel: +1 202 462 6900; Fax: +1 202 328 0566; E-mail: meetinginfo@agu.org; Website: http://www.agu.org/meetings</td>
</tr>
<tr>
<td>January 14-16</td>
<td>Asian Marine Geology (5th International Conference)</td>
<td>Bangkok, Thailand.</td>
<td>Contact: Thanawat Jarupongsakul, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Fax: (+662) 2185464-5; E-mail: thanawat@sc.chula.ac.th</td>
</tr>
</tbody>
</table>

2004

March 27 - April 4	National Earth Science Teachers Association (Annual Meeting)	Atlanta, Georgia, USA.	Contact: NESTA, 2000 Florida Ave., N.W., Washington, D.C. 20009, USA. Tel: +1-202 462 69 10; Fax: +1-202 328 0566; E-mail: fireton@kosmos.agu.org
April 18-21	American Association of Petroleum Geologists and Society for Sedimentary Geology (SEPM) (Joint Annual Meeting and Exhibition)	Dallas, Texas, USA.	Contact: AAPG Conventions Dept., P.O. Box 979, Tulsa, OK 74119, USA. Tel: +1-918 560 2679; Fax: +1-918 560 2684; E-mail: convene@aapg.org; Website: www.aapg.org
May 17-21	American Geophysical Union and Canadian Geophysical Union (Joint Meeting)	Montreal, Canada.	Contact: AGU Meetings Department, 2000 Florida Avenue, NW, Washington, DC 20009 USA. Tel: +1 202 462 6900; Fax: +1 202 328 0566; E-mail: meetinginfo@agu.org; Website: http://www.agu.org/meetings
June 27 – July 2	Water-Rock Interaction (11th International Symposium)	Saratoga Springs, New York, USA.	Contact: Dr. Susan Brantley, Secretary General, Dept. of Geosciences, The Pennsylvania State University, 239 Deike Building, University Park PA 16802, USA. Tel: +1-814 863 1739; Fax: +1-814 863 8724; Website: www.outreach.psu.edu/C&I/WRI/
July 4-9	International Palynological Congress (11th)	Granada, Spain.	Contact: Technical Secretary. E-mail: eurocongres@eurocongres.es; Website: www.ugr.es/-biovegl
August 20-28	International Geological Congress (32nd), "The Renaissance of Geology"	Florence, Italy.	Contact: Ms. Chiara Manetti, Università degli Studi di Firenze, Dipartimento di Scienze della Terra, Via La Pira, 4, 50121 Firenze, Italy. Tel/Fax: +39-055 238 2146; E-mail: cmanetti@geo.unifi.it; To request the First Circular, send e-mail to: 32igc@32igc.org or visit the Congress Website:
www.32igc.org

August 27 - September 4
VLADIVOSTOK-2004 INTERIM IAGOD CONFERENCE (Metallogeny of the Pacific Northwest: Tectonics, Magmatism & Metallogeny of Active Continental Margins), Vladivostok, Khabarovsk, Magadan, Russian Far East, Russia. (Contact: Russian National IAGOD Group, Federal Far East Geological Institute, Far Eastern Branch of Russian Academy of Sciences, 169, Prospekt 100-letiya, Vladivostok, 690022, Russia. Tel: 7(4232)31-87-50; Fax: 7(4232)31-78-47; E-mail: iagodconf@fegi.ru or fegi@online.marine.su; Website: http://www.fegi.ru/IAGOD/index.htm)

September 11-19
TECTONICS, MAGMATISM AND METALLOGENY OF ACTIVE CONTINENTAL MARGINS (Interim International Conference on Metallogeny of the Pacific Northwest), Vladivostok, Russia. Sponsored by the Russian Academy of Sciences and The Society of Economic Geologists. (Contact: Far East Geological Institute, Far Eastern Branch of Russian Academy of Sciences, 169, Prospekt 100-letiya, Vladivostok, 690022 Russia. Tel: +7(4232)31-87-50; Fax: +7(4232)31-78-47; E-mail: iagodconf@fegi.ru or fegi@online.marine.su; Website: http://www.fegi.ru/IAGOD/)

September 15-17
SEDIMENTOLOGY (23rd Annual Meeting of the International Association of Sedimentology), Coimbra, Portugal. (Contact: Rui Pena dos Reis, universidade de Coimbra, Dpto. Ciências da Terra, Largo Marquês de Pombal, 3014 Coimbra, Portugal; E-mail: penareis@ci.uc.pt)

October 10-15
SOCIETY OF EXPLORATION GEOPHYSICISTS (74th Annual Meeting and International Exposition), Denver, Colorado, USA. (Contact: Debbi Hyer, 8801 S. Yale, Tulsa, OK 74137, USA. Tel: (+1-918) 497 5500; E-mail: dhyer@seg.org; Website: http://www.fegi.ru/IAGOD/)
ORDER FORM

GEOLOGICAL SOCIETY OF MALAYSIA
PUBLICATIONS

The Assistant Secretary,
Geological Society of Malaysia,
c/o Department of Geology,
University of Malaya,
50603 Kuala Lumpur,
MALAYSIA

Dear Sir,

Please send me the following publications. I enclose US$/RM*................................. in cheque/money order/bank draft.*

<table>
<thead>
<tr>
<th>Item</th>
<th>No. of Copies</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: __________________________

Signature: __________________________

*Delete where applicable

Please mail to: __________________________

(Please print) __________________________

APRIL 2002
Conference Issue
No. 45

Editors: G.H. Teh, Ismail Yusoff, Azman Abdul Ghani & T.F. Ng

Collaborators:
Minerals and Geoscience Department Malaysia
Universiti Kebangsaan Malaysia
University of Malaya
Universiti Sains Malaysia
Institute of Geology Malaysia

Bulletin of the Geological Society of Malaysia

Cheques, Money Orders, Postal Orders or Bank Drafts must accompany local orders. Please add 80 sen for postage. For foreign orders, please send your purchase order. We will invoice you in your own currency. Orders should be addressed to:

PRICE: RM50.00

The Hon. Assistant Secretary
GEOLOGICAL SOCIETY OF MALAYSIA
e/o Dept. of Geology, University of Malaya
50603 Kuala Lumpur, MALAYSIA
Common Rocks of Malaysia

A full colour poster illustrating 28 common rocks of Malaysia. With concise description of the features and characteristics of each rock type including common textures of igneous, sedimentary and metamorphic rocks.

Laminated

Size: 94 cm x 66 cm (42" x 26")

Price:

- Student members: RM7.00 (one copy per member, subsequent copies RM10.00 each)
- Members: RM8.00 (one copy per member, subsequent copies RM10.00 each)
- Non-members: RM10.00 per copy

CHEQUES, MONEY ORDERS, POSTAL ORDERS OR BANK DRAFTS MUST ACCOMPANY LOCAL ORDERS. PLEASE ADD 70 SEN FOR POSTAGE. FOR FOREIGN ORDERS, PLEASE SEND YOUR PURCHASE ORDER. WE WILL INVOICE YOU IN YOUR OWN CURRENCY. ORDERS SHOULD BE ADDRESSED TO:

The Hon. Assistant Secretary
GEOLOGICAL SOCIETY OF MALAYSIA
c/o Dept. of Geology, University of Malaya
50603 Kuala Lumpur, MALAYSIA
General Information

Papers should be as concise as possible. However, there is no fixed limit as to the length and number of illustrations. Normally, the whole paper should not exceed 30 printed pages. The page size will be 204 x 280 mm (8 x 11 inches).

The final decision regarding the size of the illustrations, sections of the text to be in small type and other matters relating to printing rests with the Editor.

The final decision of any paper submitted for publication rests with the Editor who is aided by a Special Editorial Advisory Board. The Editor may send any paper submitted for review by one or more reviewers. Authors can also ask for a review of their paper by experts of their choice. Authors alone are responsible for the facts and opinions given. The authors of papers found to be unsuitable for publication may not be returned to the authors but reasons for the rejection will be given. The authors of papers found to be unsuitable for publication may appeal only to the Special Editorial Advisory Board.

The Editor will consider the appeal together with the Special Editorial Advisory Board.

Unless with the consent of the Editor, papers which have been published before should not be submitted for consideration.

Authors must agree not to publish elsewhere a paper submitted and accepted.

Authors alone are responsible for the facts and opinions given in their papers and for the correctness of references etc.

One set of proofs will be sent to the author (if time permits), to be checked for printer’s errors. In the case of two or more authors, please indicate to whom the proofs should be sent.

Twenty-five reprints of each article published are supplied free-of-charge. Additional reprints can be ordered on a reprint order form, which is included with the proofs.

The scripts must be typewritten double-spaced on paper not exceeding 210 x 297 mm (or 8.27 x 11.69 inches, A4 size). One side of the page must only be typed on.

Figure captions must be typed on a separate sheet of paper. The captions must not be drafted on the figures. The figure number should be marked in pencil on the margin or reverse side.

Original maps and illustrations or as glossy prints should ideally be submitted with sufficiently bold and large lettering to permit reduction to 18 x 25 cm: fold-outs and large maps will be considered only under special circumstances.

Photographs should be of good quality, sharp and with contrast. For each photograph, submit two glossy prints, at least 8 x 12.5 cm and preferably larger. Use of metric system of measurements (SI) is strongly urged wherever possible.

An abstract in English which is concise and informative is required for each paper.

References cited in the text should be listed at the end of the paper and arranged in alphabetical order and typed double-spaced. The name of the book or journal must be in italics. The references should be quoted in the following manner:

Submission of electronic text. In order to publish the paper as quickly as possible after acceptance, authors are requested to submit the final text also on a 3.5" diskette. Both Macintosh and PC (DOS/Windows) platforms are supported. Main text, tables and illustrations should be stored in separate files with clearly identifiable names. Text made with most word processors can be readily processed but authors are advised to provide an additional copy of the text file in ASCII format. Preferred format for illustration is Encapsulated PostScript (EPS) but authors may submit graphic files in their native form. It is essential that the name and version of softwares used is clearly indicated. The final manuscript may contain parts (e.g. formulae, complex tables) or last-minute corrections which are not included in the electronic text on the diskette; however, this should be clearly marked in an additional hardcopy of the manuscript. Authors are encouraged to ensure that apart from any such small last-minute corrections, the disk version and the hardcopy must be identical. Discrepancies can lead to proofs of the wrong version being made.
KANDUNGAN (Contents)

CATATAN GEOLOGI (Geological Notes)

Harwant Singh and Peter H.F. Lo: The geology and aquifer potential in Peninsular Malaysia 1
W. Zuhairi W.Y. and Tan, B.K.: Soils suitability for landfill liner material: a case study from South Wales, United Kingdom 7

PERTEMUAN PERSATUAN (Meetings of the Society)

Abdul Rahim Samsudin: Technique and roles of geophysics in unravelling subsurface structures and information of the earth 15

BERITA-BERITA PERSATUAN (News of the Society)

Keahlian (Membership) 19
Pertukaran Alamat (Change of Address) 21
Current Addresses Wanted 21
Pertambahan Baharu Perpustakaan (New Library Additions) 22

BERITA-BERITA LAIN (Other News)

Kalendar (Calendar) 23

Cover photo: Iron-oxide infilled fractures, Pulau Langkawi by T.F. Ng